
NASA-TM-_I_9T9

The Need For Vendor Source Code at NAS

Russell Carter

Report RND-007 June 1994

National Aeronautics and
Space Administration

Ames Research Center

Moffett Field, California 94035-1000

ARC 275 (Rev Mar 93)

The Need For Vendor Source Code at NAS

Russell Carter

Report RND-007 June 1994

NAS Systems Development Branch

NAS Systems Division
NASA Ames Research Center

Mail Stop 258-5

Moffett Field, CA 94035-1000

Abstract

The Numerical Aerodynamic Simulation (NAS) Facility has a long standing practice of
maintaining buildable source code for installed hardware. There are two reasons for this:
NAS's designated pathfinding role, and the need to maintain a smoothly running opera-
tional capacity given the widely diversified nature of the vendor installations. NAS has a
need to maintain support capabilities when vendors are not able; diagnose and remedy
hardware or software problems where applicable; and to support ongoing system soft-
ware development activities whether or not the relevant vendors feel support is justified.
This note provides an informal history of these activities at NAS, and brings together the
general principles that drive the requirement that systems integrated into the NAS envi-
ronment run binaries built from source code, onsite.

1.0 Introduction

The Numerical Aerodynamic Simulation (NAS) Program at Ames

Research Center is a large scale integrated computer center featuring vec-

tor supercomputers, highly parallel systems, high performance graphics

workstations and appropriately large storage servers. These systems run

various flavors of Unix, and are all interconnected via one or more high

performance LAN. NAS supports over fifteen major systems and 350 sys-

tems overall. Each subsystem is characterized by production use of mul-

tiple vendor solutions, which must coexist peacefully in the open

environment. The responsibility of the NAS Development and Support

Branches (RND and RNS) is the continued smooth functioning of this

very complex environment.

A major goal of the NAS division is pathfinding in the area of high per-

formance system integration. Achieving this goal requires the flexibility

to install the highest performing systems, regardless of vendor. Thus, the

NAS pathfinding goal is the source of much of the diversity, and accom-

panying challenges, inherent in the NAS operational environment.

It is critical for the tools and techniques used to maintain the effective-

ness of the NAS environment that the operating system and layered soft-
ware environments be run from source code built onsite. The list of

vendors includes Wellfleet, Cray Research, Thinking Machines, Silicon

Graphics, Sun, Convex, BSDI, StorageTek, Ultra, and Intel Scientific Com-

puters. Each of these vendors supplies system source code, and in most

cases the running operating system is built onsite. NAS personnel fre-

quently respond to questions about the origin and necessity of the build-

able source code requirement, particularly from vendors unfamiliar with

or new to the NAS environment. This document provides a sampling of

our experiences, pros and cons, with operating system issues that pertain

to the NAS requirement that "we build what we run," and thereby

should provide insight into the motivation behind our rigid requirement

that buildable operating system source code must accompany any sys-
tem installed at our site.

The structure of this document is as follows. First, there is a description of

the real-world vendor environment in which NAS operates. Next follows

the three categories of use that we have for system source code:

• Documentation

• Software Development

• Bug identification, patch; resolution of vendor design flaws

Then follows a discussion of vendor data rights, and some of our proce-

dures that we use to protect them. Finally, there is a summary. It is impor-

tant to note that no proprietary codeis ever transferred to unlicensed
platforms at NAS---even for projectsthat require porting.

2.0 Practical Considerations

Many vendors sell a product and offer little or no support for integration

into complex multivendor sites like NAS. The product may work fine

under some circumstances but due to the complexity of software and

configuration issues, it may not work as intended for NAS.

Reasons for the lack of support are varied but are usually one or more of

the following:

• Hard problems!

(Complex systems have complex problems!)

• Management issues:

Magnitude of support task underestimated
Poor internal communications

Support staff not competent enough

Insufficient engineering resources

• Firm having financial difficulties

• Conflicts with marketing/sales goals

In the last item, a firm may be overly sales-oriented, particularly when a

new product is introduced. The vendor may not give sufficient priority to

support, or a vendor may choose not to recognize an issue as a bug due

to sales/marketing ramifications.

3.0 Experiences at NAS

The experiences fall roughly into the four different categories listed

below. I have included typical examples. This is by no means comprehen-

sive: the list I maintain for these examples has many more entries.

3.1 Documentation

Documentation on the types of systems installed at NAS is often out of

date with the installed software, or even just wrong. Some documenta-

tion may be out of date due to running early releases or beta software.

Others are out of date even though packaged in an official release. Fun-

damental tasks such as adding a device driver, say for a HiPPI attached

RAID array are much more difficult without access to source, since the
definitive documentation on what kernel calls (for instance) are available

is the source code itself.

3

• On Cray ResearchSystems,sourcecode was used to fix incorrect
documentation. The actual system scheduling parameters turned
out to be entirely different from claims on the manual page. Simi-
larly, incomplete documentation was filled in by using source code.
Exactly how the scheduler determines an "interactive" processwas
discovered this way.

• The Portable Batch System'sresourcemonitor needs to be able to
extract information from the system kernel concerning global
resource availability and utilization and about per-sessionresource
utilization. PBS'smachine oriented miniserver module has similar
needs to control sessionlimits. Generally, documentation of the nec-
essarykernel interfaces is sketchy enough that referenceto code is
required to find out how they work. In the caseof the Paragon, the
documentation is completely lacking. Fortunately, personsworking
on the Portable BatchSystemcan refer to the source codeto learn
what is needed.

• Wellfleet source code provided the only accuratedocumentation on
the workings of the supplied routers. This knowledge was neces-
sary to develop effective network monitors.

• Rebuilding everything from vendor-supplied source guarantees
that you have the correctsource.Problemswith Cygnus Support
distributions were uncovered by building from sourceonsite.

• The top program, widely used for system monitoring, relies on ker-
nel tables. Often the tables are not documented.

3.2 Security

Due to the wide variety of operating systems and software applications

installed at NAS, there are a large number of security alerts that must be

evaluated by NAS personnel. Many times, unofficial security alerts are

posted by users who have had systems compromised long before official

security alerts and vendor patches are available. During such time, it is

essential that source code be available to NAS personnel in order to eval-

uate the level of risk and/or to modify code in the event that the security

bug is of a critical nature. Also, there are times when security needs to be

strengthened within operating systems and applications in order to meet

local security policies. Such issues also indicate the need for source code

when vendor supplied security patches involve portions of software that

previously have been modified to meet NAS needs.

• Sun and SGI source code allowed for the modification of

rpc.mountd which increased the level of NAS network security by

limiting NFS mounting of NAS machines from only those machines

within the nas.nasa.gov domain.

3.3 Bug identification, patching; resolution of vendor design flaws

There are numerous examples of site-critical bugs fixed using source

code before the vendor could (or would) respond to bug report.

• Incorrect padding of tape blocks in a tape driver ruined backups.

Botched system scheduling parameters required fixing.

• The Proteon Ring evaluation required driver debugging using UNI-
COS source code.

• Early SGI releases included a bug that prevented telnet connections

to the Cray-2. Source code was required to fix the bug.

• NAStore, the NAS mass storage system, used an Informix data base

which resulted in significant waste of time and personnel. Source

code was not obtained because of the high cost. It turned out that

the software had critical bugs relating to its commit function. Infor-

mix was unwilling to fix them. That cost many man-months to

implement workaround and recovery procedures, and more to do

what should have done in the first place -- reimplement NAStore

only around packages for which source code is available, in this case

a b-tree package.

• The Morris Virus sendmail bug was fixed using source code for all

systems except SUN, within two days. Without source code to SUN

sendmail, the fix for SUN systems took six months.

• Resolution of vendor-vendor incompatibilities is facilitated through

the use of diagnostic traps implemented in the operating systems, as

was the case with Cray and NSC.

• iPSC/860 remote host software ported to SGI systems. Without this

added functionality, the iPSC/860 could not have supported the

NAS workload. NAS personnel successfully carried out the port.

• iPSC/860 cube limit increased to more than ten. The artificial cube

limit severely impacted the usability of the iPSC/860 to support

multidisciplinary codes.

• Routing protocol bugs in the Wellfleet routers were fixed in order

to support the Routing Information Protocol package. Workarounds

for other problems were implemented through this manner as well.

• Amdahl File system problems. After a catastrophic crash of the

Amdahl hosted mass storage system, NAS personnel diagnosed an

Amdahl generated fatal design error. Access to source code allowed

the implementation of file system repair tools that Amdahl had

never bothered to produce, with a partial recovery of the lost data.

3.4 Software Development

The nature of the systems installed at NAS requires ability to add new

features and functionality that frequently the vendor will not agree to do

for us in a timely fashion, if at all. NAS acquiresmany technologies
before they are "proven" or "mature", and often, making such a technol-
ogy work in production implies that we will perform development sup-
port on the technology.Without sourcecode, the vast majority of this
work would not be possible and NAS would be subjected to the some-
times unsuitable agendasof vendors for support and further develop-
ment. The following examples illustrate the varieties of NAS
development needsthat aremet using sourcecode.

• The Network Queuing System(NQS) was developed using source
code for targeted systems.

• The Portable BatchSystem'sresourcemonitor needs to be able to
extract information from the systemkernel concerning global
resourceavailability and utilization and about per-sessionresource
utilization. PBS'smachine oriented miniserver module hassimilar
needsto control sessionlimits. Generally,documentation of the nec-
essarykernel interfaces is sketchy enough that referenceto codeis
required to find out how they work.

• Amdahl UTS source codeenabled the implementation of NAStore
and port TCP/IP when it wasn't available from Amdahl.

• ConvexOS sourcecodeallowed us to port NAStore and enhancethe
OS.Joint development with Convex resulted in an improvement in
file system performance from 20MB/s to 150MB/s.

• Wellfleet routers source code allowed the implementation of router
discovery. This is now a distributed product by Wellfleet.

• Sourcefor Unicos and Cray NQS allowed the implementation of the
SessionReservableFile System,an enhancedresourcemanagement
function. Disk quotas and an Ultra driver (mandatory in the NAS
environment) were also implemented.

• UNICOS sourcecode was need to develop tools to modify the ker-
nel mount table and develop the top, and mu (memory usage) com-
mands. Minor hooks were added for new user-level services such as

real-time and cpu-time gid limits.

• Non-intrusive, low-level data collection requires modification to the

operating system. Two successful projects that required access to

system source code are the iPSC/860 Concurrent File System moni-

toring and Van Voorst's message sizes monitoring project.

• The Map library on the iPSC/860 to support multidisciplinary

applications is a modified version of an Intel message passing

library, _uccessfully modified with no performance degradation. It

allows application programmers access enhanced message passing

functionality.

• For the p2d2 project and MPK project, source is required on targeted

platforms for the libraries that support parallel processing, e.g.,

6

messagepassing, collective operations, processcreation, termina-
tion, locks, events, and critical sections.

4.0 Vendor Data Rights

NAS recognizes the sensitivity of vendor source code, and strives to pro-

tect the source code that we are given access to, while at the same time

maintaining efficient development practices. The procedures in place

have allowed us to maintain the NAS's functionality while in no instance

causing damage through disclosure to unapproved parties, in the ten

year history of the program. For instance, NAS personnel do not take

licensed software from Vendor A and port it to Vendor B's product, be it

hardware or software products. Also, Vendor A does not have access to

Vendor B source code. The source distributions are kept in separate areas.

It has been the custom at NAS to negotiate the terms and conditions for

buildable source code access at the initial acquisition stage. This has been

found to be the only practical way of dealing with numerous and often

competing interests surrounding the issue.

The policy at NAS is to support local modifications to source code, if the

modifications are not adopted by the vendor. On the other hand, NAS

modifications are willingly transferred to the vendor. In several

instances, these are now part of revenue generating packages offered to

other customers by the vendor.

5.0 Summary

In an ideal world, hardware works flawlessly, software works flawlessly,

kernel interfaces are documented completely and flawlessly, documenta-

tion is in sync with binary distributions, and vendors are strongly moti-

vated to meet NAS mission critical needs in a timely manner. None of

these hold in practice. Hence the requirement that NAS run system soft-
ware built onsite from source code. NAS access to buildable source code

has demonstrable benefits for the vendor, and historically has been a

basis for continued progress and improvement of the supplied systems,
which has lead to increased markets and revenue for vendors.

6.0 Acknowledgments

This note represents my distillation of the collective wisdom of the NAS

Systems Development (RND) and Computational Services (RNS) Branch

personnel, including supporting contractors. Without the help of the

many persons who have worked on the complex systems problems his-

torically encountered at the NAS, this information would not have been

documented. Indeed, much of the information in this note has not previ-
ously beenformally documented from the perspective of the sourcecode
requirements. Contributors of comments,examples and/or text include
(in no particular order): BruceBlaylock, John Lekashman,Robert Ciotti
and Dave Tweten of NASA RND; Bill Kramer, and Toby Harness of
NASA RNS; JonathanHahn of UNETIX; Parkson Wong, Bill Nitzberg,
SamFineberg, Bernard Traversat,Dave McNab, Eric Townsend, Keith
Thompson, Alfred Nothaft, Doreen Cheng,JeffBecker,and David Barkai
of Computer SciencesCorporation; and D. V.Henkel-Wallace of Cygnus
Support.

8

Title: The Need for Vendor Source Code
at NAS

Author(s): Russell Carter

Reviewers:

"I have carefully and thoroughly reviewed
this technical report. I have worked with the
author(s) to ensure clarity of presentation
and technical accuracy. I take personal re-
sponsibility for the quality of this document."

Signed: & ,.,;lJ _,-_A{_ c*.-

Name: /_ A'v 1/) _/_ak_/_ {
/

,_f * /

Rio, rt I (i, ./7-" ,

Name: (._.OJ/! h ?'---7"(r-- >,<, ._/+=C,.-

Branch Chief:

Approved: __'_6,4_ _

d
Date & TR Number:

4 <oae-q_ _ D--q<_-oo7

